Source code for colour_hdri.calibration.debevec1997

"""
Debevec (1997) Camera Response Function Computation
===================================================

Define the *Debevec (1997)* camera responses computation objects:

-   :func:`colour_hdri.g_solve`
-   :func:`colour_hdri.camera_response_functions_Debevec1997`

See Also
--------
`Colour - HDRI - Examples: Merge from Low Dynamic Range Files Jupyter Notebook
<https://github.com/colour-science/colour-hdri/\
blob/master/colour_hdri/examples/examples_merge_from_ldr_files.ipynb>`__

References
----------
-   :cite:`Debevec1997a` : Debevec, P. E., & Malik, J. (1997). Recovering high
    dynamic range radiance maps from photographs. Proceedings of the 24th
    Annual Conference on Computer Graphics and Interactive Techniques -
    SIGGRAPH "97, August, 369-378. doi:10.1145/258734.258884
"""

from __future__ import annotations

from functools import partial

import numpy as np
from colour.hints import (
    Any,
    ArrayLike,
    Callable,
    Dict,
    NDArrayFloat,
    Tuple,
)
from colour.utilities import as_float_array, as_int_array, tstack

from colour_hdri.exposure import average_luminance
from colour_hdri.generation import weighting_function_Debevec1997
from colour_hdri.sampling import samples_Grossberg2003
from colour_hdri.utilities import ImageStack

__author__ = "Colour Developers"
__copyright__ = "Copyright 2015 Colour Developers"
__license__ = "BSD-3-Clause - https://opensource.org/licenses/BSD-3-Clause"
__maintainer__ = "Colour Developers"
__email__ = "colour-developers@colour-science.org"
__status__ = "Production"

__all__ = [
    "g_solve",
    "extrapolating_function_polynomial",
    "camera_response_functions_Debevec1997",
]


[docs] def g_solve( Z: ArrayLike, B: ArrayLike, l_s: float = 30, w: Callable = weighting_function_Debevec1997, n: int = 256, ) -> Tuple[NDArrayFloat, NDArrayFloat]: """ Given a set of pixel values observed for several pixels in several images with different exposure times, this function returns the imaging system's response function :math:`g` as well as the log film irradiance values :math:`lE` for the observed pixels. Parameters ---------- Z Set of pixel values observed for several pixels in several images. B Log :math:`\\Delta t`, or log shutter speed for images. l_s :math:`\\lambda` smoothing term. w Weighting function :math:`w`. n :math:`n` constant. Returns ------- :class:`tuple` Camera response functions :math:`g(z)` and log film irradiance values :math:`lE`. References ---------- :cite:`Debevec1997a` """ Z = as_int_array(Z) B = as_float_array(B) Z_x, Z_y = Z.shape A = np.zeros((Z_x * Z_y + n + 1, n + Z_x)) b = np.zeros((A.shape[0], 1)) w_n = w(np.linspace(0, 1, n)) k = 0 for i in np.arange(Z_x): for j in np.arange(Z_y): Z_c = Z[i, j] w_ij = w_n[Z_c] A[k, Z_c] = w_ij A[k, n + i] = -w_ij b[k] = w_ij * B[j] k += 1 A[k, np.int_(n / 2)] = 1 k += 1 for i in np.arange(1, n - 1, 1): A[k, i - 1] = l_s * w_n[i] A[k, i + 0] = l_s * w_n[i] * -2 A[k, i + 1] = l_s * w_n[i] k += 1 x = np.squeeze(np.linalg.lstsq(A, b, rcond=None)[0]) g = x[0:n] lE = x[n : x.shape[0]] return g, lE
def extrapolating_function_polynomial( crfs: ArrayLike, weighting_function: Callable, degree: int = 7, **kwargs: Any, # noqa: ARG001 ) -> NDArrayFloat: """ Polynomial extrapolating function used to handle zero-weighted data of given camera response functions. The extrapolation occurs where the weighting function masks fully the camera response functions, e.g., at both ends for *Debevec (1997)*. Parameters ---------- crfs Camera response functions :math:`g(z)`. weighting_function Weighting function :math:`w`. degree Degree of the extrapolating function polynomial. Other Parameters ---------------- kwargs Keyword arguments. Returns ------- :class:`numpy.ndarray` Extrapolated camera response functions :math:`g(z)`. """ crfs = as_float_array(crfs) samples = np.linspace(0, 1, crfs.shape[0]) mask = ~(weighting_function(samples) == 0) for x in range(crfs.shape[-1]): coefficients = np.polyfit(samples[mask], crfs[mask, x], degree) polynomial = np.poly1d(coefficients) crfs[~mask, x] = polynomial(samples[~mask]) return crfs
[docs] def camera_response_functions_Debevec1997( image_stack: ImageStack, sampling_function: Callable = samples_Grossberg2003, sampling_function_kwargs: Dict | None = None, weighting_function: Callable = weighting_function_Debevec1997, weighting_function_kwargs: Dict | None = None, extrapolating_function: Callable = extrapolating_function_polynomial, extrapolating_function_kwargs: Dict | None = None, l_s: float = 30, n: int = 256, normalise: bool = True, ) -> NDArrayFloat: """ Return the camera response functions for given image stack using *Debevec (1997)* method. Image channels are sampled with :math:`s` sampling function and the output samples are passed to :func:`colour_hdri.g_solve`. Parameters ---------- image_stack Stack of single channel or multi-channel floating point images. sampling_function Sampling function :math:`s`. sampling_function_kwargs Arguments to use when calling the sampling function. weighting_function Weighting function :math:`w`. weighting_function_kwargs Arguments to use when calling the weighting function. extrapolating_function Extrapolating function used to handle zero-weighted data. extrapolating_function_kwargs Arguments to use when calling the extrapolating function. l_s :math:`\\lambda` smoothing term. n :math:`n` constant. normalise Enables the camera response functions normalisation. Returns ------- :class:`numpy.ndarray` Camera response functions :math:`g(z)`. References ---------- :cite:`Debevec1997a` """ if sampling_function_kwargs is None: sampling_function_kwargs = {} if weighting_function_kwargs is None: weighting_function_kwargs = {} if extrapolating_function_kwargs is None: extrapolating_function_kwargs = {} s_o = sampling_function(image_stack.data, **sampling_function_kwargs) L_l = np.log( 1 / average_luminance( image_stack.f_number, image_stack.exposure_time, image_stack.iso ) ) w = partial(weighting_function, **weighting_function_kwargs) g_c = [g_solve(s_o[..., x], L_l, l_s, w, n)[0] for x in range(s_o.shape[-1])] crfs = np.exp(tstack(np.array(g_c))) if extrapolating_function is not None: crfs = extrapolating_function(crfs, w, **extrapolating_function_kwargs) if normalise: crfs /= np.max(crfs, axis=0) return crfs