colour_hdri.characterise_vignette#
- colour_hdri.characterise_vignette(image: ArrayLike, method: Literal['2D Function', 'Bivariate Spline', 'RBF'] | str = 'RBF', **kwargs: Any) DataVignetteCharacterisation [source]#
Characterise the vignette of given image using given method.
- Parameters:
image (ArrayLike) – Image to characterise the vignette of.
method (Literal['2D Function', 'Bivariate Spline', 'RBF'] | str) – Vignette characterisation method.
function – {
colour_hdri.distortion.characterise_vignette_2D_function()
}, Characterisation function.pre_denoise_sigma – {
colour_hdri.distortion.characterise_vignette_bivariate_spline()
}, Standard deviation of the gaussian filtering kernel applied on the image.post_denoise_sigma – {
colour_hdri.distortion.characterise_vignette_bivariate_spline()
}, Standard deviation of the gaussian filtering kernel applied on the resampled image at givensamples
count.samples – {
colour_hdri.distortion.characterise_vignette_bivariate_spline()
}, Sample count of the resampled image on the long edge.degree – {
colour_hdri.distortion.characterise_vignette_bivariate_spline()
}, Degree of the bivariate spline.denoise_sigma – {
colour_hdri.distortion.characterise_vignette_RBF()
}, Standard deviation of the gaussian filtering kernel applied on the image.kwargs (Any)
- Returns:
Vignette characterisation.
- Return type:
Examples
>>> image = apply_radial_gradient(np.ones([300, 400])) >>> parameters, principal_point = characterise_vignette(image).values >>> parameters.shape (180, 1) >>> principal_point array([ 0.4983333..., 0.49875 ]) >>> parameters, principal_point = characterise_vignette(image, method="RBF").values >>> parameters.shape (180, 1) >>> principal_point array([ 0.4983333..., 0.49875 ]) >>> parameters, principal_point = characterise_vignette( ... image, method="2D Function" ... ).values >>> parameters.shape (1, 6) >>> principal_point array([ 0.4983333..., 0.49875 ]) >>> parameters, principal_point = characterise_vignette( ... image, method="Bivariate Spline" ... ).values >>> parameters.shape (37, 50, 1) >>> principal_point array([ 0.4983333..., 0.49875 ])